Aporia Documentation
Get StartedBook a Demo🚀 Cool StuffBlog
V2
V2
  • 📖Aporia Docs
  • 🤗Introduction
    • Quickstart
    • Support
  • 💡Core Concepts
    • Why Monitor ML Models?
    • Understanding Data Drift
    • Analyzing Performance
    • Tracking Data Segments
    • Models & Versions
  • 🚀Deployment
    • AWS
    • Google Cloud
    • Azure
    • Databricks
    • Offline / On-Prem
    • Platform Architecture
  • 🏠Storing your Predictions
    • Overview
    • Real-time Models (Postgres)
    • Real-time Models (Kafka)
    • Batch Models
    • Kubeflow / KServe
  • 🧠Model Types
    • Regression
    • Binary Classification
    • Multiclass Classification
    • Multi-Label Classification
    • Ranking
  • 🌈Explainability
    • SHAP values
  • 📜NLP
    • Intro to NLP Monitoring
    • Example: Text Classification
    • Example: Token Classification
    • Example: Question Answering
  • 🍪Data Sources
    • Overview
    • Amazon S3
    • Athena
    • BigQuery
    • Databricks
    • Glue Data Catalog
    • Google Cloud Storage
    • PostgreSQL
    • Redshift
    • Snowflake
    • Microsoft SQL Server
    • Oracle
  • ⚡Monitors & Alerts
    • Overview
    • Data Drift
    • Metric Change
    • Missing Values
    • Model Activity
    • Model Staleness
    • Performance Degradation
    • Prediction Drift
    • Value Range
    • Custom Metric
    • New Values
    • Alerts Consolidation
  • 🎨Dashboards
    • Overview
  • 🤖ML Monitoring as Code
    • Getting started
    • Adding new models
    • Data Segments
    • Custom metrics
    • Querying metrics
    • Monitors
    • Dashboards
  • 📡Integrations
    • Slack
    • Webhook
    • Teams
    • Single Sign On (SAML)
    • Cisco
  • 🔐Administration
    • Role Based Access Control (RBAC)
  • 🔑API Reference
    • REST API
    • API Extended Reference
    • Custom Segment Syntax
    • Custom Metric Syntax
    • Code-Based Metrics
    • Metrics Glossary
  • ⏩Release Notes
    • Release Notes 2024
    • Release Notes 2023
Powered by GitBook
On this page
  1. Core Concepts

Tracking Data Segments

Sometimes looking over our entire data doesn't supply us with enough insights to understand what is best to do. We need the ability to break our data into smaller pieces to reach valuable and sharp insights.

This is exactly when data segmentation jumps to our help!

Zooming into a specific data segment can help us understand if our overall performance degradation originates just in that segment or do we have a wide problem. Comparing two different segments can help us decide which one of them is more valuable to invest in our future campaign.

Tracking Data Segments

There are infinite ways to segment your data. Let us say we want to segment our subjects by their age. What interval between bins should we choose? should that interval be constant or maybe correlating to a real-world segmentation?

Don't be tempted to create them all. Think about what segmentation choice can help you answer real valuable questions that may influence the actions you'll take.

For example, gender is often just raw data and not a feature, but slicing your data by gender can help you surface performance differences or even biases. In such cases, you should consider even monitoring specific issues by segments.

PreviousAnalyzing PerformanceNextModels & Versions

Last updated 2 years ago

💡